

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Thymomas and Thymic Carcinomas

Version 2.2016

NCCN.org

Continue

NCCN Guidelines Version 2.2016 Panel Members **Thymomas and Thymic Carcinomas**

NCCN Guidelines Index Thymic Table of Contents Discussion

* David S. Ettinger, MD/Chair † The Sidney Kimmel Comprehensive **Cancer Center at Johns Hopkins**

Douglas E. Wood, MD/Vice-Chair ¶ Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance

* Gregory J. Riely, MD, PhD/Lead † **Memorial Sloan Kettering Cancer Center**

Wallace Akerley, MD † **Huntsman Cancer Institute** at the University of Utah

Lyudmila A. Bazhenova, MD † ‡ UC San Diego Moores Cancer Center

Hossein Borghaei, DO, MS † ‡ **Fox Chase Cancer Center**

David Ross Camidge, MD, PhD † University of Colorado Cancer Center

Richard T. Cheney, MD ≠ Roswell Park Cancer Institute

Lucian R. Chirieac, MD ≠ Dana-Farber/Brigham and Women's **Cancer Center**

Thomas A. D'Amico, MD ¶ **Duke Cancer Institute**

Todd L. Demmy, MD ¶
Roswell Park Cancer Institute

Thomas Dilling, MD, MS § Moffitt Cancer Center

Ramaswamy Govindan, MD † Siteman Cancer Center at Barnes-**Jewish Hospital and Washington** University School of Medicine

Mark Hennon, MD ¶
Roswell Park Cancer Institute

Leora Horn, MD, MSc † Vanderbilt-Ingram Cancer Center

Thierry M. Jahan, MD † ‡ **UCSF Helen Diller Family Comprehensive Cancer Center**

Ritsuko Komaki, MD § The University of Texas MD Anderson Cancer Center

Rudy P. Lackner, MD ¶
Fred & Pamela Buffett Cancer Center

Michael Lanuti, MD ¶ Massachusetts General Hospital Cancer Center

Rogerio Lilenbaum, MD + Yale Cancer Center/Smilow Cancer Hospital

Jules Lin, MD ¶ University of Michigan **Comprehensive Cancer Center**

Billy W. Loo, Jr., MD, PhD § Stanford Cancer Institute

Renato Martins, MD, MPH † Fred Hutchinson Cancer Research Center/ **Seattle Cancer Care Alliance**

Gregory A. Otterson, MD † The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute

Jyoti D. Patel, MD ‡ **Robert H. Lurie Comprehensive Cancer Center of Northwestern University**

Katherine M. Pisters, MD † The University of Texas MD Anderson Cancer Center

Karen Reckamp, MD, MS † ‡ City of Hope Comprehensive Cancer Center

Steven E. Schild, MD § **Mayo Clinic Cancer Center**

Theresa A. Shapiro, MD, PhD ¥ The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Neelesh Sharma, MD, PhD † ‡
Case Comprehensive Cancer Center/University
Hospitals Seidman Cancer Center and Cleveland **Clinic Taussig Cancer Institute**

Scott J. Swanson, MD ¶ Dana-Farber/Brigham and Women's **Cancer Center**

James Stevenson, MD † Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland **Clinic Taussig Cancer Institute**

Kurt Tauer, MD † **University of Tennessee Health Science Center**

Stephen C. Yang, MD ¶ The Sidney Kimmel Comprehensive **Cancer Center at Johns Hopkins**

NCCN

Kristina Gregory, RN, MSN, OCN Miranda Hughes, PhD

- † Medical oncology
- ¶ Surgery/Surgical oncology
- § Radiation oncology/Radiotherapy
- ≠ Pathology
- # Hematology/Hematology oncology
- d Diagnostic/Interventional radiology
- ¥ Patient advocate
- *Writing committee member

Continue

NCCN Guidelines Panel Disclosures

NCCN Guidelines Version 2.2016 Table of Contents Thymomas and Thymic Carcinomas

NCCN Guidelines Index Thymic Table of Contents Discussion

NCCN Thymomas and Thymic Carcinomas Panel Members

Summary of Guidelines Updates

Initial Evaluation (THYM-1)

Initial Management (THYM-2)

Postoperative Treatment and Management (THYM-3)

Locally Advanced, Advanced, or Recurrent Disease (THYM-4)

Principles of Surgical Resection (THYM-A)

Principles of Radiation Therapy (THYM-B)

Principles of Chemotherapy for Thymic Malignancies (THYM-C)

World Health Organization Histologic Classification (THYM-D)

Staging (ST-1)

Clinical Trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, <u>click here:</u> <u>nccn.org/clinical_trials/physician.html</u>.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise specified.

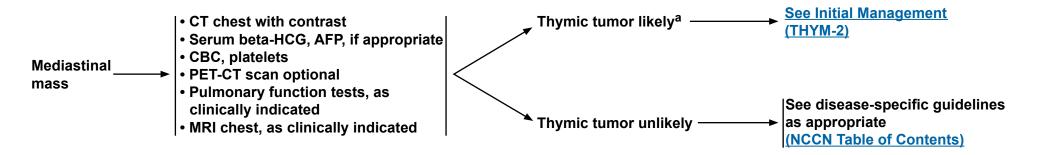
See <u>NCCN Categories of Evidence</u> and Consensus.

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient's care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2016.

NCCN Guidelines Index Thymic Table of Contents Discussion

Updates in Version 2.2016 of the NCCN Guidelines for Thymomas and Thymic Carcinomas from Version 1.2016 include:

MS-1

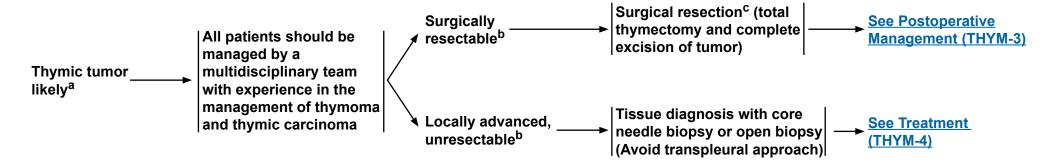

• The discussion section was updated.

No Updates in Version 1.2016 of the NCCN Guidelines for Thymomas and Thymic Carcinomas from Version 1.2015.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

INITIAL EVALUATION

^aWell-defined anterior mediastinal mass in the thymic bed, tumor markers negative, absence of other adenopathy, and absence of continuity with the thyroid.

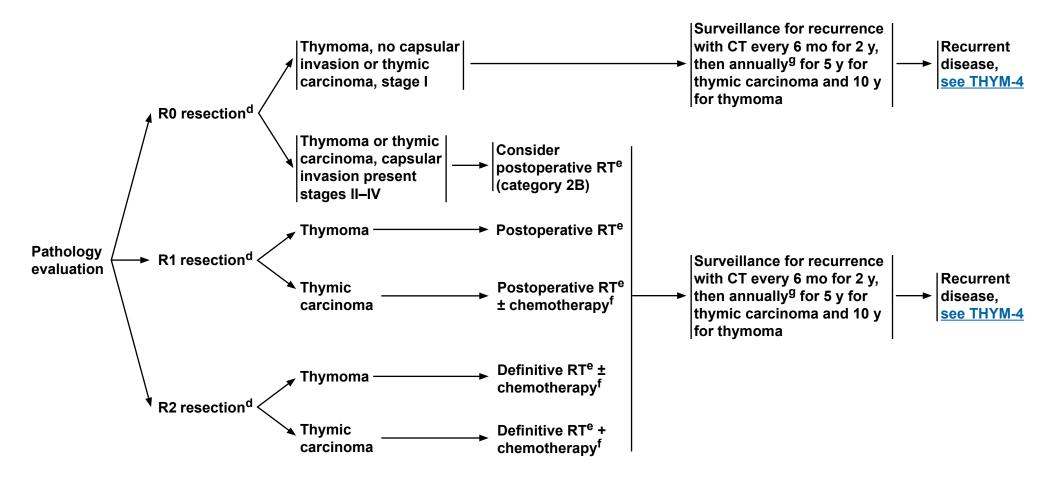

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

INITIAL MANAGEMENT

Note: All recommendations are category 2A unless otherwise indicated.


^aWell-defined anterior mediastinal mass in the thymic bed, tumor markers negative, absence of other adenopathy, and absence of continuity with the thyroid. ^bDetermination of resectability should be made by a board-certified thoracic surgeon, with primary focus on thoracic oncology. ^cSee Principles of Surgical Resection (THYM-A).

NCCN Guidelines Index
Thymic Table of Contents
Discussion

POSTOPERATIVE TREATMENT^C

POSTOPERATIVE MANAGEMENT

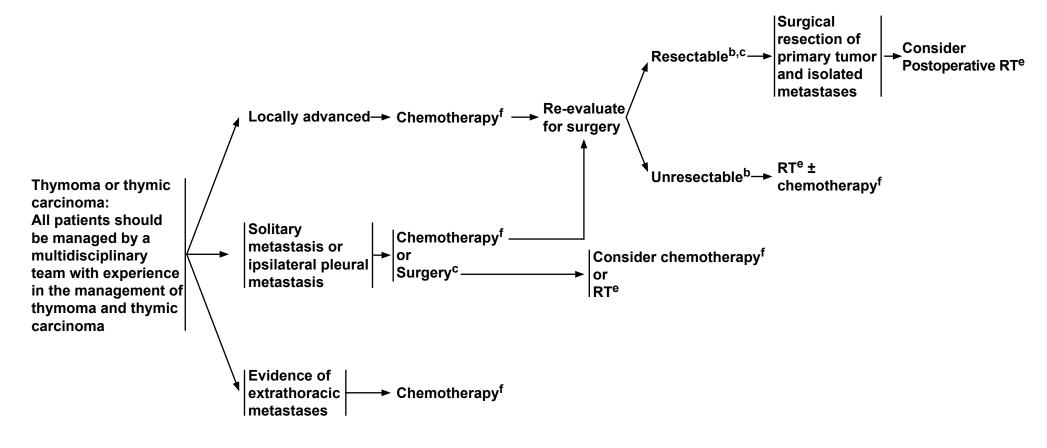
<u>See Principles of Surgical Resection (THYM-A)</u>.

Note: All recommendations are category 2A unless otherwise indicated.

dR0 = no residual tumor, R1 = microscopic residual tumor, R2 = macroscopic residual tumor.

^eSee Principles of Radiation Therapy (THYM-B).

See Principles of Chemotherapy for Thymic Malignancies (THYM-C).


⁹The duration for surveillance has not been established.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

LOCALLY ADVANCED, ADVANCED, OR RECURRENT DISEASE

TREATMENT

Note: All recommendations are category 2A unless otherwise indicated.

^bDetermination of resectability should be made by a board-certified thoracic surgeon, with primary focus on thoracic oncology.

^cSee Principles of Surgical Resection (THYM-A).

eSee Principles of Radiation Therapy (THYM-B).

^fSee Principles of Chemotherapy for Thymic Malignancies (THYM-C).

NCCN Guidelines Index
Thymic Table of Contents
Discussion

PRINCIPLES OF SURGICAL RESECTION

- Surgical resection should be performed on carefully evaluated patients by board-certified thoracic surgeons. Locally advanced (unresectable) and resectable stage ≥ II cases should be discussed and evaluated by a multidisciplinary team.
- Surgical biopsy should be avoided if a resectable thymoma is strongly suspected based on clinical and radiologic features.
- Biopsy of a possible thymoma should avoid a transpleural approach.
- Prior to surgery, patients should be evaluated for signs and symptoms of myasthenia gravis and should be medically controlled prior to undergoing surgical resection.
- Goal of surgery is complete excision of the lesion with total thymectomy and complete resection of contiguous and noncontiguous disease.
- Complete resection may require the resection of adjacent structures, including the pericardium, phrenic nerve, pleura, lung, and even major vascular structures. Bilateral phrenic nerve resection should be avoided due to severe respiratory morbidity.
- During thymectomy, the pleural surfaces should be examined for pleural metastases. If feasible, resection of pleural metastases to achieve complete gross resection is appropriate.
- Minimally invasive procedures are not routinely recommended due to the lack of long-term data. However, minimally invasive procedures may be considered if all oncologic goals can be met as in standard procedures, and if performed in specialized centers by surgeons with experience in these techniques.¹⁻⁵

Note: All recommendations are category 2A unless otherwise indicated.

¹Pennathur A, Qureshi I, Schubert MJ, et al. Comparison of surgical techniques for early stage thymoma: feasibility of minimally invasive thymectomy and comparison with open resection. J Thorac Cardiovasc Surg 2011;141:694-701.

²Ye B, Tantai JC, Ge XX, et al. Surgical techniques for early-stage thymoma: video-assisted thorascopic thymectomy versus transsternal thymectomy. J Thorac Cardiovasc Surg 2014;147:1599-1603.

³Sakamaki Y, Oda T, Kanazawa G, et al. Intermediate-term oncologic outcomes after video-assisted thorascopic thymectomy for early-stage thymoma. J Thorac Cardiovasc Surg 2014;148:1230-1237.

⁴Manoly I, Whistance RN, Sreekumar R, et al. Early and mid-term outcomes of trans-sternal and video-assisted thoracoscopic surgery for thymoma. Eur J Cardiothorac Surg 2014;45:e187-193.

⁵Liu TJ, Lin MW, Hsieh MS, et al. Video-assisted thoracoscopic surgical thymectomy to treat early thymoma: a comparison with the conventional transsternal approach. Ann Surg Oncol 2014;322-328.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY (1 of 2)1,2

General Principles

- Recommendations regarding RT should be made by a board-certified radiation oncologist.
- Definitive RT should be given for patients with unresectable disease (if disease progresses on induction chemotherapy), incompletely resected invasive thymoma or thymic carcinoma, or as adjuvant therapy after chemotherapy and surgery for patients with locally advanced disease.
- Radiation oncologists need to communicate with the surgeon to review the operative findings and to help determine the target volume at risk. They also need to communicate with the pathologist regarding the detailed pathology on histology, disease extent such as extracapsular extension, and surgical margins.
- Acronyms and abbreviations for RT are the same as listed in the Principles of RT for non-small cell lung cancer. <u>See NCCN Guidelines for Non-Small Cell Lung Cancer</u>.

Radiation Dose

- The dose and fractionation schemes of RT depend on the indication of the radiation and the completeness of surgical resection in postoperative cases.
- A dose of 60 to 70 Gy should be given to patients with unresectable disease.
- For adjuvant treatment, the radiation dose consists of 45 to 50 Gy for clear/close margins and 54 Gy for microscopically positive resection margins. A total dose of 60 Gy and above should be given to patients with gross residual disease (similar to patients with unresectable disease),^{3,4} when conventional fractionation (1.8–2.0 Gy per daily fraction) is applied.

<u>See Radiation Volume and</u> <u>Radiation Techniques (THYM-B 2 of 2)</u>

Note: All recommendations are category 2A unless otherwise indicated.

¹Gomez D, Komaki R, Yu J, et al. Radiation therapy definitions and reporting guidelines for thymic malignancies. J Thorac Oncol 2011;6:S1743-1748.

²Gomez D, Komaki R. Technical advances of radiation therapy for thymic malignancies. J Thorac Oncol 2010;5:S336-343.

³Mornex F, Resbeut M, Richaud P, et al. Radiotherapy and chemotherapy for invasive thymomas: a multicentric retrospective review of 90 cases. The FNCLCC trialists. Federation Nationale des Centres de Lutte Contre le Cancer. Int J Radiat Oncol Biol Phys 1995;32:651-659.

⁴Myojin M, Choi NC, Wright CD, et al. Stage III thymoma: pattern of failure after surgery and postoperative radiotherapy and its implication for future study. Int J Radiat Oncol Biol Phys. 2000;46(4):927-933.

NCCN Guidelines Index Thymic Table of Contents Discussion

PRINCIPLES OF RADIATION THERAPY (2 of 2)

Radiation Volume

- The gross tumor volume should include any grossly visible tumor. Surgical clips indicative of gross residual tumor should be included for postoperative adjuvant RT.
- The clinical target volume (CTV) for postoperative RT should encompass the entire thymus (for partial resection cases), surgical clips, and any potential sites with residual disease. The CTV should be reviewed with the thoracic surgeon.
- Extensive elective nodal irradiation (entire mediastinum and bilateral supraclavicular nodal regions) is not recommended, as thymomas do not commonly metastasize to regional lymph nodes.⁵
- The planning target volume (PTV) should consider the target motion and daily setup error. The PTV margin should be based on the individual patient's motion, simulation techniques used (with and without inclusion motion), and reproducibility of daily setup of each clinic.

Radiation Techniques

- CT-based planning is highly recommended. CT scans should be taken in the treatment position with arms raised above the head (treatment position). Simulations of target motion are encouraged whenever possible. CT scans can be performed at the end of natural inhale, exhale, and under free breathing when more sophisticated techniques like 4-D CT, gated CT, or active breathing control are not available. Target motion should be managed using the Principles of RT for non-small cell lung cancer. See NCCN Guidelines for Non-Small Cell Lung Cancer. Intravenous contrast is beneficial in the unresectable setting.
- Radiation beam arrangements should be selected based on the shape of PTV aiming to confine the prescribed high dose to the target
 and minimize dose to adjacent critical structures. Anterior-posterior and posterior-anterior ports weighing more anteriorly, or wedge pair
 technique may be considered. These techniques, although commonly used during the traditional 2-D era, can generate an excessive dose to
 normal tissue. A dose-volume histogram of the lungs, heart, and cord need to be carefully reviewed for each plan.
- RT should be given by 3-D conformal technique to reduce surrounding normal tissue damage (eg, heart, lungs, esophagus, spinal cord). Intensity-modulated RT (IMRT) may further improve the dose distribution and decrease the dose to the normal tissue as indicated. If IMRT is applied, the ASTRO/ACR IMRT guidelines should be strictly followed.^{6,7}
- In addition to following the normal tissue constraints recommendation using the Principles of RT for non-small cell lung cancer, more conservative limits are recommended to minimize the dose volumes to all the normal structures. Since these patients are younger and mostly long-term survivors, the mean dose to the total heart should be as low as reasonably achievable.

See General Principles and Radiation Dose (THYM-B 1 of 2)

⁵Ruffini E, Mancuso M, Oliaro A, et al. Recurrence of thymoma: analysis of clinicopathologic features, treatment, and outcome. J Thorac Cardiovasc Surg 1997;113:55-63.

⁶Moran JM, Dempsey M, Eisbruch A, et al. Safety considerations for IMRT: executive summary. Med Phys 2011;38:5067-5072.

⁷Hartford AC, Palisca MG, Eichler TJ, et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) Practice Guidelines for Intensity-Modulated Radiation Therapy (IMRT). Int J Radiat Oncol Biol Phys 2009;73:9-14.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

THYM-B 2 OF 2

NCCN Guidelines Index Thymic Table of Contents Discussion

PRINCIPLES OF CHEMOTHERAPY FOR THYMIC MALIGNANCIES

FIRST-LINE COMBINATION CHEMOTHERAPY REGIMENS

CAP¹ (preferred for thymoma)
Cisplatin 50 mg/m² IV day 1
Doxorubicin 50 mg/m² IV day 1
Cyclophosphamide 500 mg/m² IV day 1
Administered every 3 weeks

CAP with prednisone²
Cisplatin 30 mg/m² days 1–3
Doxorubicin, 20 mg/m²/d
IV continuous infusion on days 1–3
Cyclophosphamide 500 mg/m² IV on day 1
Prednisone 100 mg/day days 1–5
Administered every 3 weeks

ADOC³

Cisplatin 50 mg/m² IV day 1 Doxorubicin 40 mg/m² IV day 1 Vincristine 0.6 mg/m² IV day 3 Cyclophosphamide 700 mg/m² IV day 4 Administered every 3 weeks PE⁴ Cisplatin 60 mg/m² IV day 1 Etoposide 120 mg/m²/d IV days 1–3

VIP⁵
Etoposide 75 mg/m² on days 1–4
Ifosfamide 1.2 g/m² on days 1–4
Cisplatin 20 mg/m² on days 1–4
Administered every 3 weeks

Administered every 3 weeks

SECOND-LINE CHEMOTHERAPY
Sunitinib (Thymic carcinomas only)⁷
Pemetrexed⁸
Everolimus⁹
Paclitaxel¹⁰⁻¹¹
Octreotide (including LAR) +/- prednisone¹²
Gemcitabine¹³
5-FU and leucovorin¹⁴⁻¹⁵
Etoposide⁴
Ifosfamide¹⁶

Carboplatin/Paclitaxel⁶ (preferred for thymic carcinoma) Carboplatin AUC 6 Paclitaxel 225 mg/m² Administered every 3 weeks

References on THYM-C 2 of 2

Note: All recommendations are category 2A unless otherwise indicated.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

PRINCIPLES OF CHEMOTHERAPY FOR THYMIC MALIGNANCIES REFERENCES

- ¹Loehrer PJ Sr, Kim K, Aisner SC, et al. Cisplatin plus doxorubicin plus cyclophosphamide in metastatic or recurrent thymoma: final results of an intergroup trial. The Eastern Cooperative Oncology Group, Southwest Oncology Group, and Southeastern Cancer Study Group. J Clin Oncol 1994;12:1164–1168.
- ²Kim ES, Putnam JB, Komaki R, et al. Phase II study of a multidisciplinary approach with induction chemotherapy, followed by surgical resection, radiation therapy, and consolidation chemotherapy for unresectable malignant thymomas: final report. Lung Cancer 2004;44:369–379.
- ³Fornasiero A, Daniele O, Ghiotto C, et al. Chemotherapy for invasive thymoma. A 13-year experience. Cancer 1991;68:30–33.
- ⁴Giaccone G, Ardizzoni A, Kirkpatrick A, et al. Cisplatin and etoposide combination chemotherapy for locally advanced or metastatic thymoma. A phase II study of the European Organization for Research and Treatment of Cancer Lung Cancer Cooperative Group. J Clin Oncol 1996;14:814–820.
- ⁵Loehrer PJ Sr, Jiroutek M, Aisner S, et al. Combined etoposide, ifosfamide, and cisplatin in the treatment of patients with advanced thymoma and thymic carcinoma: an intergroup trial. Cancer 2001;91:2010–2015.
- ⁶Lemma GL, Lee JW, Aisner SC, et al. Phase II study of carboplatin and paclitaxel in advanced thymoma and thymic carcinoma. J Clin Oncol 2011;29:2060–2065.
- ⁷Thomas A, Rajan A, Berman A, et al. Sunitinib in patients with chemotherapy-refractory thymoma and thymic carcinoma: an open-label phase 2 trial. Lancet Oncol 2015;16:177-186.
- ⁸Loehrer PJ, Yiannoutsos CT, Dropcho S, et al. A phase II trial of pemetrexed in patients with recurrent thymoma or thymic carcinoma [abstract]. J Clin Oncol 2006;24(Suppl 18):Abstract 7079.
- ⁹Zucali PA, De Pas TM, Palmieri G, et al. Phase II study of everolimus in patients with thymoma and thymic carcinoma previously treated with cisplatin-based chemotherapy [abstract]. J Clin Oncol 2014;32(suppl 5): Abstract 7527.
- ¹⁰Umemura S, Segawa Y, Fujiwara K, et al. A case of recurrent metastatic thymoma showing a marked response to paclitaxel monotherapy. Jpn J Clin Oncol 2002;32:262–265.
- ¹¹Yamamoto N, Tsurutani J, Yoshimura N, et al. Phase II study of weekly paclitaxel for relapsed and refractory small cell lung cancer. Anticancer Res 2006;26:777–781.
- ¹²Loehrer PJ Sr, Wang W, Johnson DH, et al. Octreotide alone or with prednisone in patients with advanced thymoma and thymic carcinoma: an Eastern Cooperative Oncology Group Phase II Trial. J Clin Oncol 2004;22:293–299.
- ¹³Palmieri G, Merola G, Federico P, et al. Preliminary results of phase II study of capecitabine and gemcitabine (CAP-GEM) in patients with metastatic pretreated thymic epithelial tumors (TETs). Ann Oncol 2010;21:1168-1172.
- ¹⁴Stewart DJ, Dahrouge S, Soltys KM, Evans WK. A phase II study of 5-fluorouracil plus high-dose folinic acid in the treatment of recurrent small cell lung cancer. Am J Clin Oncol 1995;18:130–132.
- ¹⁵André T, Louvet C, Maindrault-Goebel F, et al. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR. Eur J Cancer 1999;35:1343–1347.
- ¹⁶Highley MS, Underhill CR, Parnis FX, et al. Treatment of invasive thymoma with single-agent ifosfamide. J Clin Oncol 1999;17:2737–2744.

Note: All recommendations are category 2A unless otherwise indicated.

NCCN Guidelines Index Thymic Table of Contents Discussion

World Health Organization Histologic Classification¹

<u>Type</u>	<u>Description</u>
A	A tumor composed of a population of neoplastic thymic epithelial cells having spindle/oval shape, lacking nuclear atypia, and
	accompanied by few or no nonneoplastic lymphocytes.
AB	A tumor in which foci having the features of type A thymoma are admixed with foci rich in lymphocytes.
B1	A tumor that resembles the normal functional thymus in that it combines large expanses having an appearance practically
	indistinguishable from normal thymic cortex with areas resembling thymic medulla.
B2	A tumor in which the neoplastic epithelial component appears as scattered plump cells with vesicular nuclei and distinct nucleoli
	among a heavy population of lymphocytes. Perivascular spaces are common and sometimes very prominent. A perivascular
	arrangement of tumor cells resulting in a palisading effect may be seen.
B3	A type of thymoma predominantly composed of epithelial cells having a round or polygonal shape and exhibiting no or mild
	atypia. They are admixed with a mild component of lymphocytes, resulting in a sheetlike growth of the neoplastic epithelial cells.
С	A thymic tumor (thymic carcinoma) exhibiting clear-cut cytologic atypia and a set of cytoarchitectural features no longer specific to the
	thymus, but rather analogous to those seen in carcinomas of other organs. Type C thymomas lack immature lymphocytes; whatever
	lymphocytes may be present are mature and usually admixed with plasma cells.

Note: All recommendations are category 2A unless otherwise indicated.

¹Kondo K, Yoshizawa K, Tsuyuguchi M, et al. WHO histologic classification is a prognostic indicator in thymoma. Ann Thorac Surg 2004;77:1183-1188.

NCCN Guidelines Index Thymic Table of Contents Discussion

Staging

Table 1. Modified Masaoka clinical staging of thymoma^{1,2}

Masaoka stage Diagnostic criteria

Stage I Macroscopically and microscopically completely encapsulated

Stage II (A) Microscopic transcapsular invasion

(B) Macroscopic invasion into surrounding fatty tissue or grossly adherent to but not through

mediastinal pleura or pericardium

Stage III Macroscopic invasion into neighboring organs (ie, pericardium, great vessels, lung)

(A) Without invasion of great vessels (B) With invasion of great vessels

Stage IV (A) Pleural or pericardial dissemination

(B) Lymphogenous or hematogenous metastasis

Table 2. TNM Classification³

<u> </u>	Primary lumor
TX	Primary tumor cannot be assessed
TΛ	Nie - Miero - Control - Control

T0 No evidence of primary tumor T1 Tumor completely encapsulated

T2 Tumor invades pericapsular connective tissue

T3 Tumor invades into neighboring structures,

such as pericardium, mediastinal pleura, thoracic wall,

great vessels and lung

T4 Tumor with pleural or pericardial dissemination

N Regional Lymph Nodes

NX Regional lymph nodes cannot be assessed

No regional lymph node metastasis

N1 Metastasis in anterior mediastinal lymph nodes

N2 Metastasis in other intrathoracic lymph nodes excluding anterior mediastinal lymph nodes

N3 Metastasis in scalene and/or supraclavicular lymph nodes

M Distant Metastasis

MX Distant metastasis cannot be assessed

M0 No distant metastasis

M1 Distant metastasis

Stage Grouping

Stage I	T1	N0	МО
Stage II	T2	N0	МО
Stage III	T1	N1	МО
	T2	N1	МО
	Т3	N0, 1	МО
Stage IV	T4	Any N	МО
	Any T	N2, 3	МО
	Any T	Any N	M1

¹Reprinted from Wright CD. Management of thymomas. Crit Rev Oncol Hematol 2008;65:109-120, with permission from Elsevier.

Note: All recommendations are category 2A unless otherwise indicated.

²Note that the Masaoka staging system is also used to stage thymic carcinomas.

³Travis WD, Brambilla E, Müller-Hermelink HK, Harris, CC. World Health Organization Classification of Tumours of the Lung Pleura, Thymus and Heart. IARC, Lyon, 2004.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Table of Contents

Overview	MS-2
Literature Search Criteria and Guidelines Update Methodology	MS-2
Mediastinal Masses	MS-2
Thymic Masses	MS-3
Thymomas	MS-4
Thymic Carcinomas	MS-6
References	MS-9

NCCN Guidelines Index
Thymic Table of Contents
Discussion

Overview

Thymic epithelial tumors originate in the thymus and include thymomas and thymic carcinomas. Thymomas are a common primary tumor in the anterior mediastinum, although they are rare (1.5 cases/million). Thymic carcinomas are very rare. Although thymomas can spread locally, they are much less invasive than thymic carcinomas. Patients with thymomas have 5-year survival rates of approximately 90%. They are much less invasive than thymic carcinomas. However, 5-year survival rates for thymic carcinomas are only approximately 55%.

These NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) focus on thymomas and thymic carcinomas and outline the evaluation, treatment, and management of these mediastinal tumors; these NCCN Guidelines® were first published in 2010. This revised Discussion text now includes the updates from the 2015 NCCN Guidelines for Thymomas and Thymic Carcinomas and includes recent references; no changes were made to the algorithm for the 2016 update. These NCCN Guidelines for Thymomas and Thymic Carcinomas were developed and are updated by panel members who are also on the NCCN Guidelines for Non-Small Cell Lung Cancer Panel.

Literature Search Criteria and Guidelines Update Methodology

Before the update of this version of the NCCN Guidelines for Thymomas and Thymic Carcinomas, an electronic search of the PubMed database was performed to obtain key literature in Thymomas and Thymic Carcinomas published between September 1, 2014 and October 2, 2015 using the following search terms: Thymomas; Thymic Carcinomas. The PubMed database was chosen, because it is the most widely used resource for medical literature and indexes only peer-

reviewed biomedical literature. The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase 1; Clinical Trial, Phase 2; Clinical Trial, Phase 3; Clinical Trial, Phase 4; Guideline; Meta-Analysis; Randomized Controlled Trial; Systematic Reviews; and Validation Studies.

The PubMed search resulted in 25 citations and their potential relevance was examined. The data from key PubMed articles selected by the NCCN Panel for review during the NCCN Guidelines update meeting, as well as articles from additional sources deemed as relevant to these Guidelines and discussed by the NCCN Panel, have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). If high-level evidence is lacking, recommendations are based on the panel's review of lower-level evidence and expert opinion. The complete details of the development and update of the NCCN Guidelines are available on the NCCN webpage.

Mediastinal Masses

Masses in the anterior mediastinum can be neoplasms (eg, thymomas, lymphomas, thymic carcinomas, thymic carcinoids, thymolipomas, germ cell tumors, lung metastases) or non-neoplastic conditions (eg, intrathoracic goiter, thymic cysts, lymphangiomas, aortic aneurysms). ^{5,13-16} Many mediastinal masses are benign, especially those occurring in asymptomatic patients; however, symptomatic patients often have malignant mediastinal lesions. All patients with a mediastinal mass should be evaluated to determine the type of mass and to determine the extent of disease before treatment (see *Initial Evaluation* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). It is essential to differentiate between thymic malignancies and other conditions (eg,

NCCN Guidelines Index
Thymic Table of Contents
Discussion

lung metastases, lymphoma, goiter, germ cell tumors) before treatment, because management differs for these conditions. ^{1,17,18} Most masses in the mediastinum are metastases from a primary lung cancer (eg, non-small cell lung cancer). However, about 50% of primary cancers in the anterior mediastinum are thymomas. ¹⁹

Patients with thymomas often have an indolent presentation, whereas those with lymphoma or germ cell tumors have a rapid onset of symptoms. ¹⁸ Lymphomas typically manifest as generalized disease but can also be primary anterior mediastinal lesions (ie, nodular sclerosing Hodgkin's disease, non-Hodgkin's lymphomas [diffuse large B-cell lymphoma and acute lymphoblastic lymphoma]); patients typically have lymphadenopathy (see the NCCN Guidelines for Non-Hodgkin's Lymphomas and Hodgkin Lymphoma, available at NCCN.org). ^{16,20} Thymic carcinoids are rare tumors that are discussed in the NCCN Guidelines for Neuroendocrine Tumors; they can be associated with multiple endocrine neoplasia type 1 (MEN1) syndrome (see the NCCN Guidelines for Neuroendocrine Tumors, available at NCCN.org). ^{21,22} Extragonadal germ cell tumors are rare tumors that may also occur in the mediastinum. ^{23,24}

Recommended tests for assessing mediastinal masses include chest CT with contrast and blood chemistry studies (see *Initial Evaluation* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). ^{14,25-31} On CT, a thymoma is usually a well-defined round or oval mass in the thymus without lymph node enlargement. ^{29,32,33} Recently, low-dose CT was found to be useful for detecting lung cancer in patients at high risk (see the NCCN Guidelines for Lung Cancer Screening, available at NCCN.org). ³⁴ Mediastinal masses (eg, lung metastases, thymomas, thymic carcinomas) may be detected in individuals undergoing lung cancer screening. However, data and guidelines about screening for lung cancer with low-dose CT do not apply to thymomas and thymic

carcinomas; there are no data to suggest that screening improves survival for patients with thymomas and thymic carcinomas.³⁴ In patients who cannot tolerate iodinated contrast, MRI of the chest may be useful.²⁹ Combined PET-CT may be useful for determining whether extrathoracic metastases are present.^{35,36} PET-CT provides better correlation with anatomic structures than PET alone. Alpha-fetoprotein (AFP) levels and beta–human chorionic gonadotropin (beta-hCG) levels may be measured to rule out germ cell tumors (see *Initial Evaluation* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). Thymic epithelial tumors are likely if the following are present: 1) a well-defined mediastinal mass in the thymic bed that is not continuous with the thyroid gland; 2) tumor markers for AFP or beta-hCG are negative; and 3) no other adenopathy is present.^{1,2,37}

Thymic Masses

The optimal plan of care for patients with thymic malignancies should be developed before treatment, after evaluation by radiation oncologists, thoracic surgeons, medical oncologists, and diagnostic imaging specialists.³⁸ It is critical to determine whether the mass can be surgically resected; a board-certified thoracic surgeon with a primary focus on thoracic oncology should make this decision. Total thymectomy and complete surgical excision of the tumor are the gold standard of treatment and are recommended whenever possible for most resectable tumors (see *Principles of Surgical Resection* in the NCCN Guidelines for Thymomas and Thymic Carcinomas).^{9,11,18,39,40} During thymectomy, the pleural surfaces should be examined for metastases. To achieve a complete gross resection, removal of pleural metastases may be appropriate in some patients.⁴¹⁻⁴³ Core-needle or open biopsy is recommended for locally advanced, unresectable thymic masses.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

Minimally invasive procedures are not routinely recommended, because only a few long-term studies are available regarding recurrence and survival. 44-46 However, minimally invasive procedures may be considered if standard oncologic goals can be met (as previously described) and if performed in specialized centers with surgeons with expertise in these techniques. 46-50 A recent systematic review of 1061 patients with thymomas reported that 5-year overall survival video-assisted thoracoscopic surgery (VATS: 83%–100% vs. open: 79%–98%) and 10-year recurrence-free survival (VATS: 89%–100% vs. open: 80%–93%) were similar in patients undergoing VATS compared to open thymectomy, although outcomes may be skewed due to selection bias. 44

Although several staging systems exist, the Masaoka staging system is the most widely accepted system for management and determination of prognosis for both thymomas and thymic carcinomas (see Table 1 in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 9,11,51-57 The International Thymic Malignancy Interest Group (ITMIG) suggests using the Masaoka-Koga stage classification. 51,58 A new proposal for a staging system for thymomas and thymic carcinomas is based on a combined effort by the ITMIG and International Association for the Study of Lung Cancer (IASLC). 37,59-62 The TNM staging system is less commonly used (see Table 2 in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 2,63 The current TNM staging system will be revised when the new edition of the American Joint Committee on Cancer (AJCC 8th edition) becomes effective in January 2017. Patients with stage I to III thymomas have a 5-year survival rate of approximately 85% versus 65% for stage IV disease. 9,64,65 In approximately 50% of patients, mortality is not related to thymoma. 52 Mortality is related to myasthenia gravis in approximately 20% of patients.

The WHO histologic classification system can be used to distinguish between thymomas, thymic carcinomas, and thymic carcinoids (see Table 3 in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 63,66 The WHO classification is also used to differentiate among different histologic types of thymomas (ie, A, AB, B1, B2, B3); however, it is difficult to classify thymomas. 67 Thymic carcinomas are type C in the WHO classification, although they are very different from thymomas and are not advanced thymomas (see *Thymic Carcinomas* in this Discussion). 68 The WHO histologic classification system was recently revised.^{1,2} However, the histologic subtype is less important for management than stage of disease and the extent of resection (ie, R0, R1, R2) (see Postoperative Management in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 11,69-73 For stage III to IV thymomas, 5-year survival rates have been reported to be 90% in patients with total resection. 7,11 For thymic carcinomas, 5-year survival rates are lower, even in those with total resection. 10,74

Thymomas

Thymomas typically occur in adults 40 to 70 years of age; they are rare in children or adolescents. The etiology of thymomas is unknown; alcohol, tobacco smoking, and ionizing radiation do not appear to be risk factors for thymomas. The incidence of thymomas is higher in African Americans as well as Asians and Pacific Islanders, which suggests there may be a genetic component. Although some patients are asymptomatic, others present with chest pain, cough, or dyspnea. Approximately 30% to 50% of patients with thymomas have myasthenia gravis. Symptoms suggestive of myasthenia gravis include drooping eyelids, double vision, drooling, difficulty climbing stairs, hoarseness, and/or dyspnea. Before any surgical procedure, all patients suspected of having thymomas (even those without symptoms) should have their serum antiacetylcholine receptor antibody levels measured to determine

NCCN Guidelines Index
Thymic Table of Contents
Discussion

whether they have myasthenia gravis to avoid respiratory failure during surgery. ⁶⁴ If patients have myasthenia gravis, they should receive treatment by a neurologist with experience in myasthenia gravis before undergoing surgical resection. ⁷⁸⁻⁸¹

Although thymomas can be locally invasive (eg, pleura, lung), they uncommonly spread to regional lymph nodes or extrathoracic sites. 9,64,82,83 Surgery (ie, total thymectomy and complete excision of tumor) is recommended for all resectable thymomas for patients who can tolerate the surgery. 19,84 For resected stage I and II thymomas, the 10-year survival rate is excellent (approximately 90% and 70%, respectively). 18,85 Completeness of resection is the most important predictor of outcome. Surgical biopsy is not necessary if a resectable thymoma is strongly suspected based on clinical and radiologic features (eg, patients have myasthenia gravis and a characteristic mass on CT). 18 A transpleural approach should be avoided during biopsy of a possible thymoma to prevent tumor seeding. 79,86 Small biopsy sampling (fine-needle or core-needle biopsy) does not always indicate whether invasion is present. 87 The ITMIG has established procedures for reporting the surgical and pathologic findings from resection specimens.88

Adjuvant therapy is not recommended for completely resected (R0) stage I thymomas. For incompletely resected thymomas, postoperative radiation therapy (RT) is recommended (see *Postoperative Management* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). Note that extensive elective nodal radiation is not recommended, because thymomas do not typically metastasize to regional lymph nodes. CT-based treatment planning is highly recommended before RT (see *Principles of Radiation Therapy* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). RT should

be given by the 3-D conformal technique to reduce damage to surrounding normal tissue (eg, heart, lungs, esophagus, spinal cord).

Use of intensity-modulated RT (IMRT) may decrease the dose to the normal tissues. 93,94 However, if IMRT is used, guidelines from the ATC/NCI and ASTRO/ACR should be followed (http://rrp.cancer.gov/content/docs/imrt.doc). 95-98 The ICRU-83 (International Commission on Radiation Units and Measurements Report 83) recommendations are also a useful resource. 97,99 Although the normal tissue constraints recommendations for lung cancer may be used (see the *Principles of Radiation Therapy* in the NCCN Guidelines for Non-Small Cell Lung Cancer, available at NCCN.org), more conservative limits are recommended to minimize the dose volumes to all the normal structures. 100,101 Because these patients are younger and usually long-term survivors, the mean dose to the heart should be as low as reasonably achievable.

A definitive dose of 60 to 70 Gy is recommended for patients with unresectable disease. For adjuvant treatment, a dose of 45 to 50 Gy is recommended for clear or close margins; a dose of 54 Gy is recommended for microscopically positive resection margins (see *Principles of Radiation Therapy* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 93,94,102 However, a total dose of 60 Gy or more (1.8–2 Gy/fraction per day) is recommended for patients with gross residual disease after surgery. 103,104 In patients with thymomas who have capsular invasion after an R0 resection, postoperative RT can be considered although this is a category 2B recommendation (see *Postoperative Management* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 90,93,105-107 Patients with stage III (with macroscopic invasion into neighboring organs) thymoma have higher risks of recurrent disease and, as such, postoperative radiation is recommended. 108-111 Data suggest that patients with stage II thymoma

NCCN Guidelines Index
Thymic Table of Contents
Discussion

may not benefit from postoperative radiation.^{39,89,90,106,112} Postoperative chemotherapy is also not beneficial in this setting.^{113,114}

For locally advanced thymomas, induction chemotherapy is recommended followed by an evaluation for surgery; postoperative RT can be considered after surgical resection of the primary tumor and isolated metastases (see Treatment in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 115,116 For those with solitary metastasis or ipsilateral pleural metastases, options include induction chemotherapy or surgery. For patients with unresectable disease in both of these settings, RT with [or without] chemotherapy is recommended. For metastatic disease, chemotherapy is recommended (see Principles of Chemotherapy for Thymic Malignancies in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 90,115,117-129 Although 6 different combination regimens are provided in the NCCN algorithm, cisplatin/doxorubicin-based regimens seem to yield the best outcomes; the panel feels that cisplatin/doxorubicin/cyclophosphamide is the regimen of choice for thymoma. ^{39,130-132} However, non-anthracycline regimens (eg, cisplatin/etoposide [with or without ifosfamide], carboplatin/paclitaxel) may be useful for patients who cannot tolerate the more aggressive regimens. 132,133 Induction therapy followed by surgery may be useful for thymic malignancies initially considered unresectable. 74,115,134,135

After primary treatment for resectable thymomas, panel members agree that surveillance for recurrence should include chest CT every 6 months for 2 years, then annually for 10 years for thymoma.²⁹ Given the risk of later recurrence for thymoma, surveillance should continue for at least 10 years. However, the duration, frequency, and type of imaging for surveillance for patients with thymomas have not been established in published studies. Patients with thymoma also have an increased risk

for second malignancies, although no particular screening studies are recommended. 3,136

Second-line systemic therapy includes sunitinib, pemetrexed, everolimus, paclitaxel, octreotide (long-acting release [LAR]) with or without prednisone, gemcitabine, 5-FU, etoposide, and ifosfamide. However, none of these agents has been assessed in randomized trials. Octreotide may be useful in patients with thymoma who have a positive octreotide scan or symptoms of carcinoid syndrome. Surgery is an option for patients with recurrent locally advanced disease, solitary metastases, or ipsilateral metastases.

Thymic Carcinomas

Thymic carcinomas are rare aggressive tumors that often metastasize to regional lymph nodes and extrathoracic sites; thus, they have a worse prognosis than thymomas. 5,8,11,12,16,72,73,145,146 Survival rates for thymic carcinomas vary depending on stage (stages 1–2: 91%; stages 3–4: 31%) and resectability (including completeness of resection). These tumors can be distinguished from thymomas because of their malignant histologic features and their different immunohistochemical and genetic features. They are predominantly squamous cell carcinomas and undifferentiated carcinomas. However, thymic carcinomas should be differentiated from primary lung malignancies that metastasize to the thymus and have a similar histologic appearance. Thymic carcinomas often cause pericardial and pleural effusions. The Masaoka staging system can also be used to stage thymic carcinomas (see Table 1 in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 51,149,150

It is important to note that thymic carcinomas are associated with a different clinical course from thymomas. ^{68,117} Unlike thymomas, paraneoplastic syndromes, including myasthenia gravis, are very rare in

NCCN Guidelines Index
Thymic Table of Contents
Discussion

patients with thymic carcinoma.¹⁰² If myasthenia gravis is diagnosed, then the diagnosis of thymic carcinoma should be reassessed; the patient may actually have thymoma.¹⁰ In contrast to thymomas (which mainly occur in adults), thymic carcinomas occur over a wide age range including adolescents when assessed in a single-institution Western population; they predominantly occur in Caucasian individuals.¹⁰

Similar to thymomas, patients with completely resected thymic carcinomas have longer survival than those who are either incompletely resected or are unresectable. 72,74,151 Patients who have an R0 resection have a 5-year survival of about 60%. 10 Thus, management depends on the extent of resection. Patients with thymic carcinoma have higher risks of recurrent disease; therefore, postoperative radiation is recommended to maximize local control. 10 After resection of thymic carcinomas, postoperative management includes RT with (or without) chemotherapy, depending on the completeness of resection (see Postoperative Management in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 10,72,73,93,112,152,153 A recent study suggests that adjuvant therapy may not be necessary for early-stage thymic carcinomas. 154 For unresectable or metastatic thymic carcinomas, chemotherapy with (or without) RT is recommended (see Principles of Chemotherapy for Thymic Malignancies and Principles of Radiation Therapy in the NCCN Guidelines for Thymomas and Thymic Carcinomas).¹³¹

A definitive dose of 60 to 70 Gy is recommended for patients with unresectable thymic carcinomas. For adjuvant treatment, a dose of 45 to 50 Gy is recommended for clear or close margins; a dose of 54 Gy is recommended for microscopically positive resection margins (see *Principles of Radiation Therapy* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 93,94,102 However, a total dose of 60 Gy or more (1.8–2 Gy/fraction per day) is recommended for patients with gross

residual disease after surgery. ^{103,104} In patients with thymic carcinomas who have capsular invasion after an R0 resection, postoperative RT can be considered although this is a category 2B recommendation (see *Postoperative Management* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). ^{90,93,105-107} Adjuvant therapy is not recommended for completely resected (R0) stage I thymic carcinomas. ^{39,89,90}

Unfortunately, thymic carcinomas respond poorly to chemotherapy; carboplatin/paclitaxel is recommended, because it has the highest response rate in patients with thymic carcinomas in clinical trials. 128,133,155-164 Data suggest that the ADOC (cisplatin, doxorubicin, vincristine, and cyclophosphamide) regimen is also effective, but it is more toxic than carboplatin/paclitaxel. 162 Induction chemotherapy is recommended followed by an evaluation for surgery for locally advanced disease; postoperative RT can be considered after surgical resection of the primary tumor and isolated metastases (see *Treatment* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). 10 Patients with unresectable disease can then receive RT with [or without] chemotherapy. For those with solitary metastasis or ipsilateral pleural metastases, options include induction chemotherapy or surgery.

After primary treatment for resectable disease, panel members agree that surveillance for recurrence should include chest CT every 6 months for 2 years, then annually for 5 years for thymic carcinoma. However, the duration, frequency, or type of imaging for surveillance for thymic carcinomas has not been established in published studies. Data are lacking regarding second-line chemotherapy for thymic carcinomas. Most of the second-line agents in the NCCN algorithm are appropriate for thymomas (see *Principles of Chemotherapy for Thymic Malignancies* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). However, S-1 (an oral fluorouracil) appears to be active in patients with thymic carcinomas. Targeted therapy (eg,

NCCN Guidelines Index
Thymic Table of Contents
Discussion

sunitinib, sorafenib) may be useful for patients with c-Kit mutations; however, these mutations are rare in thymic carcinomas (<10%). $^{76,119,137,167-170}$ Patients with thymomas do not have c-Kit mutations. 147

NCCN Guidelines Index
Thymic Table of Contents
Discussion

References

- 1. Marx A, Chan JK, Coindre JM, et al. The 2015 World Health Organization Classification of Tumors of the Thymus: Continuity and Changes. J Thorac Oncol 2015;10:1383-1395. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26295375.
- 2. Travis WD, Brambilla E, Burke AP, et al. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. Fourth edition. WHO Classification of Tumours. Volume 7. Vol. 7: World Health Organization; 2015.
- 3. Engels EA. Epidemiology of thymoma and associated malignancies. J Thorac Oncol 2010;5:S260-265. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20859116.
- 4. Proceedings of the First International Conference on Thymic Malignancies. August 20-21, 2009. Bethesda, Maryland, USA. J Thorac Oncol 2010;5:S259-370. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21275152.
- 5. Strollo DC, Rosado de Christenson ML, Jett JR. Primary mediastinal tumors. Part 1: tumors of the anterior mediastinum. Chest 1997;112:511-522. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9266892.
- 6. Engels EA, Pfeiffer RM. Malignant thymoma in the United States: demographic patterns in incidence and associations with subsequent malignancies. Int J Cancer 2003;105:546-551. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12712448.
- 7. Zhao Y, Shi J, Fan L, et al. Surgical treatment of thymoma: an 11-year experience with 761 patients. Eur J Cardiothorac Surg 2015. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26324679.
- 8. Huang J, Rizk NP, Travis WD, et al. Comparison of patterns of relapse in thymic carcinoma and thymoma. J Thorac Cardiovasc Surg 2009;138:26-31. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19577051.

- 9. Masaoka A. Staging system of thymoma. J Thorac Oncol 2010;5:S304-312. Available at:
- http://www.ncbi.nlm.nih.gov/pubmed/20859124.
- 10. Litvak AM, Woo K, Hayes S, et al. Clinical characteristics and outcomes for patients with thymic carcinoma: evaluation of Masaoka staging. J Thorac Oncol 2014;9:1810-1815. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25393794.
- 11. Kondo K, Monden Y. Therapy for thymic epithelial tumors: a clinical study of 1,320 patients from Japan. Ann Thorac Surg 2003;76:878-884; discussion 884-875. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12963221.
- 12. Eng TY, Fuller CD, Jagirdar J, et al. Thymic carcinoma: state of the art review. Int J Radiat Oncol Biol Phys 2004;59:654-664. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15183468.
- 13. den Bakker MA, Marx A, Mukai K, Strobel P. Mesenchymal tumours of the mediastinum--part I. Virchows Arch 2015;467:487-500. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26358059.
- 14. Araki T, Nishino M, Gao W, et al. Anterior mediastinal masses in the Framingham Heart Study: prevalence and CT image characteristics. Eur J Radiol Open 2015;2:26-31. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25705709.
- 15. Marchevsky A, Marx A, Strobel P, et al. Policies and reporting guidelines for small biopsy specimens of mediastinal masses. J Thorac Oncol 2011;6:S1724-1729. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21847054.
- 16. Strollo DC, Rosado-de-Christenson ML, Jett JR. Primary mediastinal tumors: part II. Tumors of the middle and posterior mediastinum. Chest 1997;112:1344-1357. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9367479.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

- 17. Rashid OM, Cassano AD, Takabe K. Thymic neoplasm: a rare disease with a complex clinical presentation. J Thorac Dis 2013;5:173-183. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23585946.
- 18. Detterbeck FC, Parsons AM. Management of stage I and II thymoma. Thorac Surg Clin 2011;21:59-67, vi-vii. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21070987.
- 19. Detterbeck FC, Zeeshan A. Thymoma: current diagnosis and treatment. Chin Med J (Engl) 2013;126:2186-2191. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23769581.
- 20. Barth TFE, Leithäuser F, Joos S, et al. Mediastinal (thymic) large B-cell lymphoma: where do we stand? Lancet Oncol 2002;3:229-234. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12067685.
- 21. Ferolla P, Falchetti A, Filosso P, et al. Thymic neuroendocrine carcinoma (carcinoid) in multiple endocrine neoplasia type 1 syndrome: the Italian series. J Clin Endocrinol Metab 2005;90:2603-2609. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15713725.
- 22. Teh BT. Thymic carcinoids in multiple endocrine neoplasia type 1. J Intern Med 1998;243:501-504. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9681849.
- 23. Moran CA, Suster S. Primary germ cell tumors of the mediastinum: I. Analysis of 322 cases with special emphasis on teratomatous lesions and a proposal for histopathologic classification and clinical staging. Cancer 1997;80:681-690. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9264351.
- 24. McKenney JK, Heerema-McKenney A, Rouse RV. Extragonadal germ cell tumors: a review with emphasis on pathologic features, clinical prognostic variables, and differential diagnostic considerations. Adv Anat Pathol 2007;14:69-92. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17471115.

- 25. Priola AM, Priola SM. Imaging of thymus in myasthenia gravis: from thymic hyperplasia to thymic tumor. Clin Radiol 2014;69:e230-245. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24581970.
- 26. Tomiyama N, Honda O, Tsubamoto M, et al. Anterior mediastinal tumors: diagnostic accuracy of CT and MRI. Eur J Radiol 2009;69:280-288. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18023547.
- 27. Benveniste MF, Rosado-de-Christenson ML, Sabloff BS, et al. Role of imaging in the diagnosis, staging, and treatment of thymoma. Radiographics 2011;31:1847-1861; discussion 1861-1843. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22084174.
- 28. Marom EM. Advances in thymoma imaging. J Thorac Imaging 2013;28:69-80; quiz 81-63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23422781.
- 29. Marom EM. Imaging thymoma. J Thorac Oncol 2010;5:S296-303. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20859123.
- 30. Rosado-de-Christenson ML, Strollo DC, Marom EM. Imaging of thymic epithelial neoplasms. Hematol Oncol Clin North Am 2008;22:409-431. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18514124.
- 31. Sadohara J, Fujimoto K, Muller NL, et al. Thymic epithelial tumors: comparison of CT and MR imaging findings of low-risk thymomas, highrisk thymomas, and thymic carcinomas. Eur J Radiol 2006;60:70-79. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16766154.
- 32. Quint LE, Reddy RM, Lin J, et al. Imaging in thoracic oncology: case studies from Multidisciplinary Thoracic Tumor Board: (part 2 of 2 part series). Cancer Imaging 2013;13:440-447. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24325879.
- 33. Marom EM, Rosado-de-Christenson ML, Bruzzi JF, et al. Standard report terms for chest computed tomography reports of anterior mediastinal masses suspicious for thymoma. J Thorac Oncol

NCCN Guidelines Index
Thymic Table of Contents
Discussion

2011;6:S1717-1723. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21847053.

- 34. Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21714641.
- 35. Treglia G, Sadeghi R, Giovanella L, et al. Is (18)F-FDG PET useful in predicting the WHO grade of malignancy in thymic epithelial tumors? A meta-analysis. Lung Cancer 2014;86:5-13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25175317.
- 36. Sung YM, Lee KS, Kim BT, et al. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumor subgroups. J Nucl Med 2006;47:1628-1634. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17015898.
- 37. Marx A, Strobel P, Badve SS, et al. ITMIG consensus statement on the use of the WHO histological classification of thymoma and thymic carcinoma: refined definitions, histological criteria, and reporting. J Thorac Oncol 2014;9:596-611. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24722150.
- 38. Ruffini E, Van Raemdonck D, Detterbeck F, et al. Management of thymic tumors: a survey of current practice among members of the European Society of Thoracic Surgeons. J Thorac Oncol 2011;6:614-623. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21266921.
- 39. Kondo K. Optimal therapy for thymoma. J Med Invest 2008;55:17-28. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18319541.
- 40. Detterbeck FC, Parsons AM. Thymic tumors. Ann Thorac Surg 2004;77:1860-1869. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15111216.

- 41. Wright CD. Stage IVA thymoma: patterns of spread and surgical management. Thorac Surg Clin 2011;21:93-97, vii. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21070990.
- 42. Wright CD. Extended resections for thymic malignancies. J Thorac Oncol 2010;5:S344-347. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20859130.
- 43. Huang J, Rizk NP, Travis WD, et al. Feasibility of multimodality therapy including extended resections in stage IVA thymoma. J Thorac Cardiovasc Surg 2007;134:1477-1483; discussion 1483-1474. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18023668.
- 44. Xie A, Tjahjono R, Phan K, Yan TD. Video-assisted thoracoscopic surgery versus open thymectomy for thymoma: a systematic review. Ann Cardiothorac Surg 2015;4:495-508. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26693145.
- 45. Chao YK, Liu YH, Hsieh MJ, et al. Long-term outcomes after thoracoscopic resection of stage I and II thymoma: a propensity-matched study. Ann Surg Oncol 2015;22:1371-1376. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25256127.
- 46. Liu TJ, Lin MW, Hsieh MS, et al. Video-assisted thoracoscopic surgical thymectomy to treat early thymoma: a comparison with the conventional transsternal approach. Ann Surg Oncol 2014;21:322-328. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23982255.
- 47. Pennathur A, Qureshi I, Schuchert MJ, et al. Comparison of surgical techniques for early-stage thymoma: feasibility of minimally invasive thymectomy and comparison with open resection. J Thorac Cardiovasc Surg 2011;141:694-701. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21255798.
- 48. Ye B, Tantai JC, Ge XX, et al. Surgical techniques for early-stage thymoma: video-assisted thoracoscopic thymectomy versus transsternal thymectomy. J Thorac Cardiovasc Surg 2014;147:1599-1603. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24290709.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

- 49. Sakamaki Y, Oda T, Kanazawa G, et al. Intermediate-term oncologic outcomes after video-assisted thoracoscopic thymectomy for early-stage thymoma. J Thorac Cardiovasc Surg 2014;148:1230-1237 e1231. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24560416.
- 50. Manoly I, Whistance RN, Sreekumar R, et al. Early and mid-term outcomes of trans-sternal and video-assisted thoracoscopic surgery for thymoma. Eur J Cardiothorac Surg 2014;45:e187-193. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24616388.
- 51. Detterbeck FC, Nicholson AG, Kondo K, et al. The Masaoka-Koga stage classification for thymic malignancies: clarification and definition of terms. J Thorac Oncol 2011;6:S1710-1716. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21847052.
- 52. Huang J, Detterbeck FC, Wang Z, Loehrer PJ, Sr. Standard outcome measures for thymic malignancies. J Thorac Oncol 2011;6:S1691-1697. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21847049.
- 53. Moran CA, Walsh G, Suster S, Kaiser L. Thymomas II: a clinicopathologic correlation of 250 cases with a proposed staging system with emphasis on pathologic assessment. Am J Clin Pathol 2012;137:451-461. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22338058.
- 54. Kondo K. Tumor-node metastasis staging system for thymic epithelial tumors. J Thorac Oncol 2010;5:S352-356. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20859132.
- 55. Lee HS, Kim ST, Lee J, et al. A single institutional experience of thymic epithelial tumours over 11 years: clinical features and outcome and implications for future management. Br J Cancer 2007;97:22-28. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17592498.
- 56. Masaoka A, Monden Y, Nakahara K, Tanioka T. Follow-up study of thymomas with special reference to their clinical stages. Cancer

1981;48:2485-2492. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7296496.

- 57. Wright CD. Management of thymomas. Crit Rev Oncol Hematol 2008;65:109-120. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17570676.
- 58. Detterbeck FC. The international thymic malignancy interest group. J Natl Compr Canc Netw 2013;11:589-593. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23667208.
- 59. Detterbeck FC, Stratton K, Giroux D, et al. The IASLC/ITMIG Thymic Epithelial Tumors Staging Project: proposal for an evidence-based stage classification system for the forthcoming (8th) edition of the TNM classification of malignant tumors. J Thorac Oncol 2014;9:S65-72. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25396314.
- 60. Roden AC, Yi ES, Jenkins SM, et al. Reproducibility of 3 histologic classifications and 3 staging systems for thymic epithelial neoplasms and its effect on prognosis. Am J Surg Pathol 2015;39:427-441. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25634747.
- 61. Fukui T, Fukumoto K, Okasaka T, et al. Clinical evaluation of a new tumour-node-metastasis staging system for thymic malignancies proposed by the International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee and the International Thymic Malignancy Interest Group. Eur J Cardiothorac Surg 2016;49:574-579. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26547095.
- 62. Bhora FY, Chen DJ, Detterbeck FC, et al. The ITMIG/IASLC Thymic Epithelial Tumors Staging Project: a proposed lymph node map for thymic epithelial tumors in the forthcoming 8th edition of the TNM classification of malignant tumors. J Thorac Oncol 2014;9:S88-96. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25396317.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

- 63. Travis W, Brambilla E, Muller-Hermelink H, Harris C. Pathology and genetics of tumours of the lung, pleura, thymus and heart. WHO Classification of Tumors, 3rd ed. Lyon: IARC Press; 2004:145-197.
- 64. Lewis JE, Wick MR, Scheithauer BW, et al. Thymoma. A clinicopathologic review. Cancer 1987;60:2727-2743. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3677008.
- 65. Park HS, Shin DM, Lee JS, et al. Thymoma. A retrospective study of 87 cases. Cancer 1994;73:2491-2498. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8174044.
- 66. Kondo K, Yoshizawa K, Tsuyuguchi M, et al. WHO histologic classification is a prognostic indicator in thymoma. Ann Thorac Surg 2004;77:1183-1188. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15063231.
- 67. Moran CA, Weissferdt A, Kalhor N, et al. Thymomas I: a clinicopathologic correlation of 250 cases with emphasis on the World Health Organization schema. Am J Clin Pathol 2012;137:444-450. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22338057.
- 68. Marx A, Rieker R, Toker A, et al. Thymic carcinoma: is it a separate entity? From molecular to clinical evidence. Thorac Surg Clin 2011;21:25-31 v-vi. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21070984.
- 69. Ruffini E, Detterbeck F, Van Raemdonck D, et al. Tumours of the thymus: a cohort study of prognostic factors from the European Society of Thoracic Surgeons database. Eur J Cardiothorac Surg 2014;46:361-368. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24482389.
- 70. Margaritora S, Cesario A, Cusumano G, et al. Thirty-five-year follow-up analysis of clinical and pathologic outcomes of thymoma surgery. Ann Thorac Surg 2010;89:245-252; discussion 252. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20103246.

- 71. Regnard JF, Magdeleinat P, Dromer C, et al. Prognostic factors and long-term results after thymoma resection: a series of 307 patients. J Thorac Cardiovasc Surg 1996;112:376-384. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8751506.
- 72. Yano M, Sasaki H, Yokoyama T, et al. Thymic carcinoma: 30 cases at a single institution. J Thorac Oncol 2008;3:265-269. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18317069.
- 73. Ogawa K, Toita T, Uno T, et al. Treatment and prognosis of thymic carcinoma: a retrospective analysis of 40 cases. Cancer 2002;94:3115-3119. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12115342.
- 74. Okereke IC, Kesler KA, Freeman RK, et al. Thymic carcinoma: outcomes after surgical resection. Ann Thorac Surg 2012;93:1668-1672; discussion 1672-1663. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22421590.
- 75. Yamada Y, Yoshino I, Nakajima J, et al. Surgical outcomes of patients with stage III thymoma in the Japanese nationwide database. Ann Thorac Surg 2015;100:961-967. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26163354.
- 76. Kelly RJ, Petrini I, Rajan A, et al. Thymic malignancies: from clinical management to targeted therapies. J Clin Oncol 2011;29:4820-4827. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22105817.
- 77. Bernard C, Frih H, Pasquet F, et al. Thymoma associated with autoimmune diseases: 85 cases and literature review. Autoimmun Rev 2016;15:82-92. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26408958.
- 78. Gilhus NE, Owe JF, Hoff JM, et al. Myasthenia gravis: a review of available treatment approaches. Autoimmune Dis 2011;2011:847393. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22007295.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

- 79. Mehran R, Ghosh R, Maziak D, et al. Surgical treatment of thymoma. Can J Surg 2002;45:25-30. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11837917.
- 80. Autoantibodies to acetylcholine receptors in myasthenia gravis. N Engl J Med 1983;308:402-403. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6823248.
- 81. Howard FM, Lennon VA, Finley J, et al. Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis. Ann N Y Acad Sci 1987;505:526-538. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3479935.
- 82. Benveniste MF, Korst RJ, Rajan A, et al. A practical guide from the International Thymic Malignancy Interest Group (ITMIG) regarding the radiographic assessment of treatment response of thymic epithelial tumors using modified RECIST criteria. J Thorac Oncol 2014;9:S119-124. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25396308.
- 83. Hwang Y, Park IK, Park S, et al. Lymph node dissection in thymic malignancies: implication of the ITMIG lymph node map, TNM stage classification, and recommendations. J Thorac Oncol 2016;11:108-114. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26762745.
- 84. Ried M, Potzger T, Sziklavari Z, et al. Extended surgical resections of advanced thymoma Masaoka stages III and IVa facilitate outcome. Thorac Cardiovasc Surg 2014;62:161-168. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23775415.
- 85. Detterbeck F, Youssef S, Ruffini E, Okumura M. A review of prognostic factors in thymic malignancies. J Thorac Oncol 2011;6:S1698-1704. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21847050.
- 86. Murakawa T, Nakajima J, Kohno T, et al. Results from surgical treatment for thymoma. 43 years of experience. Jpn J Thorac Cardiovasc Surg 2000;48:89-95. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10769987.

- 87. Wakely PE, Jr. Fine needle aspiration in the diagnosis of thymic epithelial neoplasms. Hematol Oncol Clin North Am 2008;22:433-442. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18514125.
- 88. Detterbeck FC, Moran C, Huang J, et al. Which way is up? Policies and procedures for surgeons and pathologists regarding resection specimens of thymic malignancy. J Thorac Oncol 2011;6:S1730-1738. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21847055.
- 89. Utsumi T, Shiono H, Kadota Y, et al. Postoperative radiation therapy after complete resection of thymoma has little impact on survival. Cancer 2009;115:5413-5420. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19685527.
- 90. Korst RJ, Kansler AL, Christos PJ, Mandal S. Adjuvant radiotherapy for thymic epithelial tumors: a systematic review and meta-analysis. Ann Thorac Surg 2009;87:1641-1647. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19379938.
- 91. Forquer JA, Rong N, Fakiris AJ, et al. Postoperative radiotherapy after surgical resection of thymoma: differing roles in localized and regional disease. Int J Radiat Oncol Biol Phys 2010;76:440-445. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19427738.
- 92. Ruffini E, Mancuso M, Oliaro A, et al. Recurrence of thymoma: analysis of clinicopathologic features, treatment, and outcome. J Thorac Cardiovasc Surg 1997;113:55-63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9011702.
- 93. Gomez D, Komaki R, Yu J, et al. Radiation therapy definitions and reporting guidelines for thymic malignancies. J Thorac Oncol 2011;6:S1743-1748. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21847057.
- 94. Gomez D, Komaki R. Technical advances of radiation therapy for thymic malignancies. J Thorac Oncol 2010;5:S336-343. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20859129.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

- 95. Hartford AC, Palisca MG, Eichler TJ, et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) Practice Guidelines for Intensity-Modulated Radiation Therapy (IMRT). Int J Radiat Oncol Biol Phys 2009;73:9-14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19100920.
- 96. Moran JM, Dempsey M, Eisbruch A, et al. Safety considerations for IMRT: executive summary. Med Phys 2011;38:5067-5072. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21978051.
- 97. Gregoire V, Mackie TR. State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83). Cancer Radiother 2011;15:555-559. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21802333.
- 98. Holmes T, Das R, Low D, et al. American Society of Radiation Oncology recommendations for documenting intensity-modulated radiation therapy treatments. Int J Radiat Oncol Biol Phys 2009;74:1311-1318. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19616738.
- 99. ICRU Report 83: Prescribing, Recording, and Reporting Intensity Modulated Photon Beam Therapy (IMRT). Journal of the ICRU 2010;10. Available at: http://jicru.oxfordjournals.org/content/10/1.toc.
- 100. Kong FM, Pan C, Eisbruch A, Ten Haken RK. Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol 2007;17:108-120. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17395041.
- 101. Milano MT, Constine LS, Okunieff P. Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol 2007;17:131-140. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17395043.
- 102. Ruffini E, Venuta F. Management of thymic tumors: a European perspective. J Thorac Dis 2014;6 Suppl 2:S228-237. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24868441.

- 103. Myojin M, Choi NC, Wright CD, et al. Stage III thymoma: pattern of failure after surgery and postoperative radiotherapy and its implication for future study. Int J Radiat Oncol Biol Phys 2000;46:927-933. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10705015.
- 104. Mornex F, Resbeut M, Richaud P, et al. Radiotherapy and chemotherapy for invasive thymomas: a multicentric retrospective review of 90 cases. The FNCLCC trialists. Federation Nationale des Centres de Lutte Contre le Cancer. Int J Radiat Oncol Biol Phys 1995;32:651-659. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7790251.
- 105. Singhal S, Shrager JB, Rosenthal DI, et al. Comparison of stages I-II thymoma treated by complete resection with or without adjuvant radiation. Ann Thorac Surg 2003;76:1635-1641; discussion 1641-1632. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14602300.
- 106. Rena O, Papalia E, Oliaro A, et al. Does adjuvant radiation therapy improve disease-free survival in completely resected Masaoka stage II thymoma? Eur J Cardiothorac Surg 2007;31:109-113. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17110124.
- 107. Mangi AA, Wright CD, Allan JS, et al. Adjuvant radiation therapy for stage II thymoma. Ann Thorac Surg 2002;74:1033-1037. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12400741.
- 108. Lim YJ, Kim HJ, Wu HG. Role of postoperative radiotherapy in nonlocalized thymoma: propensity-matched analysis of Surveillance, Epidemiology, and End Results database. J Thorac Oncol 2015;10:1357-1363. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/26280586.

109. Perri F, Pisconti S, Conson M, et al. Adjuvant treatment in patients at high risk of recurrence of thymoma: efficacy and safety of a three-dimensional conformal radiation therapy regimen. Onco Targets Ther 2015;8:1345-1349. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/26089683.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

- 110. Sugie C, Shibamoto Y, Ikeya-Hashizume C, et al. Invasive thymoma: postoperative mediastinal irradiation, and low-dose entire hemithorax irradiation in patients with pleural dissemination. J Thorac Oncol 2008;3:75-81. Available at:
- http://www.ncbi.nlm.nih.gov/pubmed/18166844.
- 111. Ogawa K, Uno T, Toita T, et al. Postoperative radiotherapy for patients with completely resected thymoma: a multi-institutional, retrospective review of 103 patients. Cancer 2002;94:1405-1413. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11920495.
- 112. Omasa M, Date H, Sozu T, et al. Postoperative radiotherapy is effective for thymic carcinoma but not for thymoma in stage II and III thymic epithelial tumors: the Japanese Association for Research on the Thymus Database Study. Cancer 2015;121:1008-1016. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25565590.
- 113. Attaran S, McCormack D, Pilling J, Harrison-Phipps K. Which stages of thymoma benefit from adjuvant chemotherapy post-thymectomy? Interact Cardiovasc Thorac Surg 2012;15:273-275. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22552797.
- 114. Cowen D, Richaud P, Mornex F, et al. Thymoma: results of a multicentric retrospective series of 149 non-metastatic irradiated patients and review of the literature. FNCLCC trialists. Federation Nationale des Centres de Lutte Contre le Cancer. Radiother Oncol 1995:34:9-16. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/7792406.

115. Kim ES, Putnam JB, Komaki R, et al. Phase II study of a multidisciplinary approach with induction chemotherapy, followed by surgical resection, radiation therapy, and consolidation chemotherapy for unresectable malignant thymomas: final report. Lung Cancer 2004;44:369-379. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/15140551.

- 116. Hassan M, Seoud DE. Multimodality treatments in locally advanced stage thymomas. Hematol Oncol Stem Cell Ther 2009;2:340-344. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20118057.
- 117. Kelly RJ. Systemic treatment of advanced thymic malignancies. Am Soc Clin Oncol Educ Book 2014:e367-373. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24857125.
- 118. Girard N, Lal R, Wakelee H, et al. Chemotherapy definitions and policies for thymic malignancies. J Thorac Oncol 2011;6:S1749-1755. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21847058.
- 119. Girard N. Chemotherapy and targeted agents for thymic malignancies. Expert Rev Anticancer Ther 2012;12:685-695. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22594902.
- 120. Loehrer PJ, Sr., Chen M, Kim K, et al. Cisplatin, doxorubicin, and cyclophosphamide plus thoracic radiation therapy for limited-stage unresectable thymoma: an intergroup trial. J Clin Oncol 1997;15:3093-3099. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9294472.
- 121. Loehrer PJ, Kim K, Aisner SC, et al. Cisplatin plus doxorubicin plus cyclophosphamide in metastatic or recurrent thymoma: final results of an intergroup trial. The Eastern Cooperative Oncology Group, Southwest Oncology Group, and Southeastern Cancer Study Group. J Clin Oncol 1994;12:1164-1168. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8201378.
- 122. Giaccone G, Ardizzoni A, Kirkpatrick A, et al. Cisplatin and etoposide combination chemotherapy for locally advanced or metastatic thymoma. A phase II study of the European Organization for Research and Treatment of Cancer Lung Cancer Cooperative Group. J Clin Oncol 1996;14:814-820. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/8622029.

123. Shin DM, Walsh GL, Komaki R, et al. A multidisciplinary approach to therapy for unresectable malignant thymoma. Ann Intern Med

NCCN Guidelines Index
Thymic Table of Contents
Discussion

1998;129:100-104. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9669967.

- 124. Fornasiero A, Daniele O, Ghiotto C, et al. Chemotherapy for invasive thymoma. A 13-year experience. Cancer 1991;68:30-33. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2049749.
- 125. Loehrer PJ, Jiroutek M, Aisner S, et al. Combined etoposide, ifosfamide, and cisplatin in the treatment of patients with advanced thymoma and thymic carcinoma: an intergroup trial. Cancer 2001;91:2010-2015. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11391579.
- 126. Lucchi M, Melfi F, Dini P, et al. Neoadjuvant chemotherapy for stage III and IVA thymomas: a single-institution experience with a long follow-up. J Thorac Oncol 2006;1:308-313. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17409875.
- 127. Yokoi K, Matsuguma H, Nakahara R, et al. Multidisciplinary treatment for advanced invasive thymoma with cisplatin, doxorubicin, and methylprednisolone. J Thorac Oncol 2007;2:73-78. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17410014.
- 128. Lemma GL, Loehrer PJ, Sr., Lee JW, et al. A phase II study of carboplatin plus paclitaxel in advanced thymoma or thymic carcinoma: E1C99 [abstract]. J Clin Oncol 2008;26(Suppl 15):Abstract 8018. Available at:

http://meeting.ascopubs.org/cgi/content/abstract/26/15 suppl/8018.

- 129. Venuta F, Rendina EA, Longo F, et al. Long-term outcome after multimodality treatment for stage III thymic tumors. Ann Thorac Surg 2003;76:1866-1872; discussion 1872. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14667602.
- 130. Okuma Y, Saito M, Hosomi Y, et al. Key components of chemotherapy for thymic malignancies: a systematic review and pooled analysis for anthracycline-, carboplatin- or cisplatin-based

- chemotherapy. J Cancer Res Clin Oncol 2015;141:323-331. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25146529.
- 131. Rajan A, Giaccone G. Chemotherapy for thymic tumors: induction, consolidation, palliation. Thorac Surg Clin 2011;21:107-114, viii. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21070992.
- 132. Schmitt J, Loehrer PJ, Sr. The role of chemotherapy in advanced thymoma. J Thorac Oncol 2010;5:S357-360. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20859133.
- 133. Lemma GL, Lee JW, Aisner SC, et al. Phase II study of carboplatin and paclitaxel in advanced thymoma and thymic carcinoma. J Clin Oncol 2011;29:2060-2065. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21502559.
- 134. Riely GJ, Huang J. Induction therapy for locally advanced thymoma. J Thorac Oncol 2010;5:S323-326. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20859127.
- 135. Wright CD, Choi NC, Wain JC, et al. Induction chemoradiotherapy followed by resection for locally advanced Masaoka stage III and IVA thymic tumors. Ann Thorac Surg 2008;85:385-389. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18222230.
- 136. Pan CC, Chen PC, Wang LS, et al. Thymoma is associated with an increased risk of second malignancy. Cancer 2001;92:2406-2411. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11745297.
- 137. Thomas A, Rajan A, Berman A, et al. Sunitinib in patients with chemotherapy-refractory thymoma and thymic carcinoma: an open-label phase 2 trial. Lancet Oncol 2015;16:177-186. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25592632.
- 138. Zucali PA, De Pas TM, Palmieri G, et al. Phase II study of everolimus in patients with thymoma and thymic carcinoma previously treated with cisplatin-based chemotherapy [abstract]. J Clin Oncol

NCCN Guidelines Index
Thymic Table of Contents
Discussion

2014;32:Abstract 7527. Available at: http://meetinglibrary.asco.org/content/134115-144.

139. Liang Y, Padda SK, Riess JW, et al. Pemetrexed in patients with thymic malignancies previously treated with chemotherapy. Lung Cancer 2015;87:34-38. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25443273.

140. Longo F, De Filippis L, Zivi A, et al. Efficacy and tolerability of long-acting octreotide in the treatment of thymic tumors: results of a pilot trial. Am J Clin Oncol 2012;35:105-109. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21325939.

- 141. Loehrer PJ, Sr., Wang W, Johnson DH, et al. Octreotide alone or with prednisone in patients with advanced thymoma and thymic carcinoma: an Eastern Cooperative Oncology Group Phase II Trial. J Clin Oncol 2004;22:293-299. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14722038.
- 142. Palmieri G, Merola G, Federico P, et al. Preliminary results of phase II study of capecitabine and gemcitabine (CAP-GEM) in patients with metastatic pretreated thymic epithelial tumors (TETs). Ann Oncol 2010;21:1168-1172. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19880439.
- 143. Highley MS, Underhill CR, Parnis FX, et al. Treatment of invasive thymoma with single-agent ifosfamide. J Clin Oncol 1999;17:2737-2744. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10561348.
- 144. Dai J, Song N, Yang Y, Jiang G. Is it valuable and safe to perform reoperation for recurrent thymoma? Interact Cardiovasc Thorac Surg 2015;21:526-531. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/26105772.

145. Wu JX, Chen HQ, Shao LD, et al. Long-term follow-up and prognostic factors for advanced thymic carcinoma. Medicine (Baltimore) 2014;93:e324. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/25526488.

- 146. Suster S, Rosai J. Thymic carcinoma. A clinicopathologic study of 60 cases. Cancer 1991;67:1025-1032. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1991250.
- 147. Strobel P, Hohenberger P, Marx A. Thymoma and thymic carcinoma: molecular pathology and targeted therapy. J Thorac Oncol 2010;5:S286-290. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20859121.
- 148. Moran CA, Suster S. Thymic carcinoma: current concepts and histologic features. Hematol Oncol Clin North Am 2008;22:393-407. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18514123.
- 149. Hosaka Y, Tsuchida M, Toyabe S, et al. Masaoka stage and histologic grade predict prognosis in patients with thymic carcinoma. Ann Thorac Surg 2010;89:912-917. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20172153.
- 150. Blumberg D, Burt ME, Bains MS, et al. Thymic carcinoma: current staging does not predict prognosis. J Thorac Cardiovasc Surg 1998;115:303-308; discussion 308-309. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9475524.
- 151. Ruffini E, Detterbeck F, Van Raemdonck D, et al. Thymic carcinoma: a cohort study of patients from the European society of thoracic surgeons database. J Thorac Oncol 2014;9:541-548. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24736078.
- 152. Ahmad U, Yao X, Detterbeck F, et al. Thymic carcinoma outcomes and prognosis: results of an international analysis. J Thorac Cardiovasc Surg 2015;149:95-100, 101 e101-102. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25524678.
- 153. Mao Y, Wu S. Treatment and survival analyses of completely resected thymic carcinoma patients. Onco Targets Ther 2015;8:2503-2507. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26392777.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

- 154. Sakai M, Onuki T, Inagaki M, et al. Early-stage thymic carcinoma: is adjuvant therapy required? J Thorac Dis 2013;5:161-164. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23585943.
- 155. Hirai F, Yamanaka T, Taguchi K, et al. A multicenter phase II study of carboplatin and paclitaxel for advanced thymic carcinoma: WJOG4207L. Ann Oncol 2015;26:363-368. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25403584.
- 156. Furugen M, Sekine I, Tsuta K, et al. Combination chemotherapy with carboplatin and paclitaxel for advanced thymic cancer. Jpn J Clin Oncol 2011;41:1013-1016. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21742653.
- 157. Maruyama R, Suemitsu R, Okamoto T, et al. Persistent and aggressive treatment for thymic carcinoma. Results of a single-institute experience with 25 patients. Oncology 2006;70:325-329. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17164588.
- 158. Weide LG, Ulbright TM, Loehrer PJ, Williams SD. Thymic carcinoma. A distinct clinical entity responsive to chemotherapy. Cancer 1993;71:1219-1223. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8435796.
- 159. Lucchi M, Mussi A, Ambrogi M, et al. Thymic carcinoma: a report of 13 cases. Eur J Surg Oncol 2001;27:636-640. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11669591.
- 160. Yoh K, Goto K, Ishii G-i, et al. Weekly chemotherapy with cisplatin, vincristine, doxorubicin, and etoposide is an effective treatment for advanced thymic carcinoma. Cancer 2003;98:926-931. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12942558.
- 161. Igawa S, Murakami H, Takahashi T, et al. Efficacy of chemotherapy with carboplatin and paclitaxel for unresectable thymic carcinoma. Lung Cancer 2010;67:194-197. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19409644.

- 162. Koizumi T, Takabayashi Y, Yamagishi S, et al. Chemotherapy for advanced thymic carcinoma: clinical response to cisplatin, doxorubicin, vincristine, and cyclophosphamide (ADOC chemotherapy). Am J Clin Oncol 2002;25:266-268. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12040285.
- 163. Kanda S, Koizumi T, Komatsu Y, et al. Second-line chemotherapy of platinum compound plus CPT-11 following ADOC chemotherapy in advanced thymic carcinoma: analysis of seven cases. Anticancer Res 2007;27:3005-3008. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17695487.
- 164. Komatsu Y, Koizumi T, Tanabe T, et al. Salvage chemotherapy with carboplatin and paclitaxel for cisplatin-resistant thymic carcinomathree cases. Anticancer Res 2006;26:4851-4855. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17214351.
- 165. Okuma Y, Shimokawa T, Takagi Y, et al. S-1 is an active anticancer agent for advanced thymic carcinoma. Lung Cancer 2010;70:357-363. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20951466.
- 166. Koizumi T, Agatsuma T, Komatsu Y, Kubo K. Successful S-1 monotherapy for chemorefractory thymic carcinoma. Anticancer Res 2011;31:299-301. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21273614.
- 167. Strobel P, Bargou R, Wolff A, et al. Sunitinib in metastatic thymic carcinomas: laboratory findings and initial clinical experience. Br J Cancer 2010;103:196-200. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20571495.
- 168. Bisagni G, Rossi G, Cavazza A, et al. Long lasting response to the multikinase inhibitor bay 43-9006 (Sorafenib) in a heavily pretreated metastatic thymic carcinoma. J Thorac Oncol 2009;4:773-775. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19461405.

NCCN Guidelines Index
Thymic Table of Contents
Discussion

169. Strobel P, Hartmann M, Jakob A, et al. Thymic carcinoma with overexpression of mutated KIT and the response to imatinib. N Engl J Med 2004;350:2625-2626. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15201427.

170. Girard N. Targeted therapies for thymic malignancies. Thorac Surg Clin 2011;21:115-123, viii. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21070993.